

Published on Web 05/18/2010

Ni-Catalyzed Borylative Diene–Aldehyde Coupling: The Remarkable Effect of $P(SiMe_3)_3$

Hee Yeon Cho and James P. Morken*

Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467

Received February 25, 2010; E-mail: morken@bc.edu

Rapid construction of complex molecules with high regio- and stereoselectivity is a central objective in organic synthesis. In this regard, reactions that result in the formation of multiple new bonds and that establish multiple stereocenters are particularly valuable.¹ To address this topic, we recently initiated studies on the borylative coupling of unsaturated substrates.² In one manifestation of this strategy, we examined the Mori-Tamaru Ni-catalyzed coupling of aldehydes and dienes^{3,4} but employed bis(pinacolato)diboron $(B_2(pin)_2)$ as the reducing agent. In the presence of PCy₃ as an ancillary ligand for nickel, reaction product 3 (Scheme 1) is furnished as a single constitutional and stereoisomer. In accord with mechanistic studies by Ogoshi,⁵ it is likely that this reaction occurs by a pathway involving oxidative cyclometalation to give 1; subsequent transmetalation would furnish 2 and reductive elimination to connect C1 with the boryl ligand would release 3 from the catalyst. We considered that other ligands might alter the regioselectivity of the reductive elimination by connection of C3 and the boryl group and, thereby, furnish allylboronate 4 as the reaction product. The structural features of compound 4 – three contiguous stereocenters, an α -chiral allylboronate,⁶ and a functional group pattern that maps onto polyketides - made this a compelling inquiry. In this report, we describe a remarkable turnover in regioselectivity of the borylative diene/aldehyde coupling when PCy₃ is replaced with P(SiMe₃)₃.

Initial exploratory studies focused on the nickel catalyzed reaction between 1 equiv each of 1,3-pentadiene, benzaldehyde, and $B_2(pin)_2$. While PCy₃ and P(*t*-Bu)₃ both promoted formation of terminal boronate **3** (analysis after oxidative workup with hydrogen peroxide), other alkyl and aryl phosphines, triaminophosphines, and simple phosphites were either ineffective or resulted in poor selectivity (Table 1). *However, when commercially available P(SiMe₃)₃ was employed, compound* **4** *was observed with excellent selectivity.*

In addition to compound 4, byproducts comprising two aldehydes and one diene or two dienes and one aldehyde were also observed. Reasoning that reaction of 4 with unreacted aldehyde might compete with the catalytic process at later stages of reaction and deliver some of these byproducts, the concentrations of $B_2(pin)_2$ and pentadiene were increased. This strategy furnished optimal conditions for this three-component process. As depicted in Table 2, upon oxidation the borylative coupling reaction converts benzaldehyde and 1,3-pentadiene to the derived 1,3-diol with >20:1 diastereoselectivity.⁷ Examination of other substrates revealed that, in general, the reaction is effective for aromatic and heteroaromatic aldehydes and generally delivers the 1,3-diol with excellent regio- and stereocontrol. To determine whether this transformation might apply to more common synthetic building blocks, the aliphatic aldehydes in entries 8-12 were also studied. These experiments suggest that the reaction can be effective with both linear and branched aliphatic aldehydes; additionally, a simple α -chiral aldehyde was found to react with Felkin selectivity thereby opening the possibility for asymmetric synthesis (entry 12).

Scheme 1

Table 1. Effect of Ligand On the Ni-Catalyzed Diborylative Coupling

Ph H +	10 mol% 15 mol% Me (1.1 equiv) THF, 22 then	Ni(cod) ₂ 6 ligand 1.2 equiv) 2 °C, 12 h H ₂ O ₂	он + р Ле 5	HO OH h
entry	ligand	5:6	% yield ^a	d.r. ^b
1	none	>20:1	39	1:1
2	PCy ₃	>20:1	69	>20:1
3	$P(t-Bu)_3$	>20:1	71	6:1
4	PPh ₃	>20:1	63	5:1
5	$P(NMe_2)_3$	>20:1	16	>20:1
6	$P(OEt)_3$	>20:1	40	4:1
7	PEt ₃	1:2	34	2:1
8	PMe ₃	1:3	55	4:1
9	P(SiMe ₃) ₃	1:12	45	>20:1

^a Isolated yield of major product. ^b d.r. of major product.

As alluded to in the introduction, general structure **4** possesses an α -chiral allylic boronate, a motif that often engages in highly selective carbonyl allylation reactions. To probe the capacity for structures such as **4** to participate in stereoselective allylations, benzaldehyde and 1,3-pentadiene were subjected to borylative coupling and, after 12 h, isobutyraldehyde was added to the reaction mixture. This single-pot reaction sequence delivered 1,6-diol **9** (Scheme 2) in good yield, as a single regioisomer, and with excellent levels of 1,5-stereoinduction (>20:1 d.r.) and olefin stereocontrol. Considering the olefin configuration in the reaction product, it appears plausible that boronate **7** reacts with isobutyraldehyde by way of transition structure **8** with the α -substituent occupying a pseudoequatorial position.⁸

P(SiMe₃)₃ is a relatively unknown ligand in transition metal catalysis,⁹ and the reversal in regioselectivity when it is used in place of PCy₃ or P(*t*-Bu)₃ deserves comment. Data in Table 1 reveal that smaller ligands may favor formation of **4** (entries 7 and 8 versus entries 2 and 3), which might suggest that P(SiMe₃)₃ simply serves as a precursor to PH₃ (reaction with adventitious moisture).¹⁰ However, *in situ* ³¹P NMR analysis of reactions in the presence of P(SiMe₃)₃ shows that most of the ligand remains unmodified (³¹P δ = -251.4 ppm) over the course of the catalytic reaction.¹¹ The fact that the cone angle of P(SiMe₃)₃ is similar to that of P(*t*-Bu)₃ (178° versus 182°)¹² suggests that the difference in regioselectivity observed with these ligands may arise from electronic rather than steric differences. While the ¹³C NMR

Table 2. Ni(cod)₂/P(SiMe₃)₃-Catalyzed Diborylative Coupling

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	R Me、 (3	H 10 mol% Ni(co 15 mol% P(SiM B ₂ (pin) ₂ (3 equ THF, 22 °C 12 h		H ₂ O ₂ R	H OH
$1 \qquad \qquad$	entry	aldehyde	product	d.r. ^a	% yield ^b
$2 \qquad \qquad$	1	С	OH OH 	>20:1	67
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	Г	OH OH <u><u>i</u> Me</u>	>20:1	73
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	Ме		>20:1	64
$5 \qquad \qquad$	4	СМа		>20:1	57
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5			>20:1	57
7 $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $	6	ст н	OH OH Me	>20:1	55
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7	СТН	OH OH Me	>20:1	54
9 $Me + H$ $Me + H$ $Me + H$ $>20:1$ 50° 10 $Ph + H$ $Ph + H$ $>20:1$ 45° 11 $Bn0 + H$ $Bn0 + H$ $>20:1$ 45° 12 $Ph + H$ $Ph + H$ $Ph + H$ $>20:1$ 37° 12 $Ph + H$ $Ph + H$ H H H H H H H H H	8	<i>n</i> -C ₅ H ₁₁ H	n-C ₅ H ₁₁ Me	>20:1	58 ^c
$10 \qquad Ph \qquad H \qquad Ph \qquad H \qquad Ph \qquad H \qquad 20:1 \qquad 45^{c}$ $11 \qquad Bn \qquad H \qquad Bn \qquad H \qquad Bn \qquad H \qquad 20:1 \qquad 37^{c}$ $12 \qquad Ph \qquad H \qquad Ph \qquad H \qquad H \qquad H \qquad 6:1^{d} \qquad 49^{c}$	9	Me H Me	Me He Me Me	>20:1	50 ^c
$11 \qquad BnO \qquad H \qquad BnO \qquad H \qquad Solution Characteristic for the second second$	10	Ph	Ph Me	>20:1	45°
$12 \qquad \begin{array}{c} \begin{array}{c} \begin{array}{c} Ph \\ H \end{array} \\ \hline \\ Me \end{array} \\ \begin{array}{c} Ph \\ He \end{array} \\ \begin{array}{c} OH \\ He \end{array} \\ \end{array} \\ \begin{array}{c} OH \\ He \end{array} \\ \begin{array}{c} OH \\ He \end{array} \\ \begin{array}{c} OH \\ He \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} OH \\ He \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} OH \\ He \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} OH \\ He \\ \end{array} \\ $	11	BnO	OH OH BnO	>20:1	37°
	12	Ph H Me	Ph Me Me	6:1 ^d	49 ^c

^{*a*} Determined by ¹H NMR analysis of unpurified reaction mixture. ^{*b*} Isolated yield of purified material. Value is an average of two experiments. ^{*c*} Run with 1.1 equiv of diene and 1.2 equiv of B₂(pin)₂. ^{*d*} Ratio refers to Felkin/anti Felkin selectivity. Reaction for 24 h.

Scheme 2

chemical shift¹³ and IR analysis (A₁ CO stretching frequency) of $(Me_3Si)_3PNi(CO)_3$ suggest that $P(SiMe_3)_3$ and trialkylphosphines are electronically similar ligands, analyses by both Bartik¹⁴ and Helm¹⁵

indicate that $P(SiMe_3)_3$ can act as an electron acceptor. Thus a tentative hypothesis is that the large cone angle of $P(SiMe_3)_3$, combined with an ability to act as an electron acceptor, may facilitate reductive elimination of **4** from **2**, prior to allyl isomerization required for formation of **3**.¹⁶

Acknowledgment. This work was supported by the NIGMS (GM-59417) and the NSF (BC Mass Spec Center; Grant No. DBI-0619576). We thank AllyChem Co., Ltd. for $B_2(pin)_2$. H.Y.C. is grateful for a Rodin Fellowship.

Supporting Information Available: Characterization and procedures. This material is available free of charge via the Internet at http:// pubs.acs.org.

References

- For a recent review of multicomponent reactions, see: Touré, B. B.; Hall, D. G. Chem. Rev. 2009, 109, 4439.
- (2) Cho, H. Y.; Morken, J. P. J. Am. Chem. Soc. 2008, 130, 16140.
- (3) (a) Sato, Y.; Takimoto, M.; Hayashi, K.; Katsuhara, T.; Takagi, K.; Mori, M. J. Am. Chem. Soc. 1994, 116, 9771. (b) Sato, Y.; Takimoto, M.; Mori, M. Tetrahedron Lett. 1996, 37, 887. (c) Takimoto, M.; Hiraga, Y.; Sato, Y.; Mori, M. Tetrahedron Lett. 1998, 39, 4543. (d) Sato, Y.; Takanashi, T.; Hoshiba, M.; Mori, M. Tetrahedron Lett. 1998, 39, 5579. (e) Sato, Y.; Saito, N.; Mori, M. Tetrahedron 1998, 54, 1153. (f) Sato, Y.; Takimoto, M.; Mori, M. J. Am. Chem. Soc. 2000, 122, 1624. (g) Sato, Y.; Saito, N.; Mori, M. J. Am. Chem. Soc. 2000, 122, 1624. (g) Sato, Y.; Saito, N.; Mori, M. J. Am. Chem. Soc. 2000, 122, 1624. (g) Sato, Y.; Saito, N.; Mori, M. J. Am. Chem. Soc. 2000, 122, 1624. (g) Sato, Y.; Saito, N.; Mori, M. J. Org. and Chem. 2002, 67, 9310. (j) Sato, Y.; Saito, N.; Mori, M. J. Org. Chem. 2002, 73, 656.
- (4) (a) Kimura, M.; Ezoe, A.; Shibata, K.; Tamaru, Y. J. Am. Chem. Soc. 1998, 120, 4033. (b) Kimura, M.; Fujimatsu, H.; Ezoe, A.; Shibata, K.; Shimizu, M.; Matsumoto, S.; Tamaru, Y. Angew. Chem., Int. Ed. 1999, 38, 397. (c) Shibata, K.; Kimura, M.; Shimizu, M.; Tamaru, Y. Org. Lett. 2001, 3, 2181. (d) Kimura, M.; Ezoe, A.; Mori, M.; Iwata, K.; Tamaru, Y. J. Am. Chem. Soc. 2006, 128, 8559.
- (5) (a) Ogoshi, S.; Tonomori, K.; Oka, M.; Kurosawa, H. J. Am. Chem. Soc. 2006, 128, 7077. Studies of carbonyl-alkyne couplings: (b) Hratchian, H. P.; Chowdhury, S. K.; Gutiérrez-Garcia, V. M.; Amarasinghe, K. K. D.; Heeg, M. J.; Schlegel, H. B.; Montgomery, J. Organometallics 2004, 23, 4636. (c) McCarren, P. R.; Liu, P.; Cheong, P. H.-Y.; Jamison, T. F.; Houk, K. N. J. Am. Chem. Soc. 2009, 131, 6654.
- (6) Select syntheses of α-chiral allyl borons: (a) Hoffmann, R. W.; Dresely, S. Angew. Chem., Int. Ed. Engl. 1986, 25, 189. (b) Ditrich, K.; Bube, T.; Stürmer, R.; Hoffmann, R. W. Angew. Chem., Int. Ed. Engl. 1986, 25, 1028. (c) Hoffmann, R. W.; Neil, G.; Schlapbach, A. Pure Appl. Chem. 1990, 62, 1993. (d) Pietruszka, J.; Schöne, N. Angew. Chem., Int. Ed. 2003, 42, 5638. (e) Pietruszka, J.; Schöne, N. Eur, J. Org. Chem. 2004, 5011. (f) Pelz, N. F.; Woodward, A. R.; Burks, H. E.; Sieber, J. D.; Morken, J. P. J. Am. Chem. Soc. 2004, 126, 16328. (g) Beckmann, E.; Hoppe, D. Synthesis 2005, 217. (h) Ito, H.; Kawakami, C.; Sawamura, M. J. Am. Chem. Soc. 2005, 127, 16034. (i) Fang, G. Y.; Aggarwal, V. K. Angew. Chem., Int. Ed. 2007, 46, 3591. (j) Carosi, L.; Hall, D. G. Angew. Chem., Int. Ed. 2007, 46, 5913.
- (7) For recent diol construction using organoboron reagents, see: (a) González, A. Z.; Román, J. G.; Alicea, E.; Canales, E.; Soderquist, J. A. J. Am. Chem. Soc. 2009, 131, 1269. (b) Chen, M.; Handa, M.; Roush, W. R. J. Am. Chem. Soc. 2009, 131, 14602.
- (8) Large boron ligands (i.e., tetraphenylethylene glycol) favor the axial orientation whereas small ligands (propanediol) favor the equatorial orientation. See: (a) Hoffmann, R. W.; Weidmann, U. J. Organomet. Chem. 1980, 195, 137. (b) Flamme, E. M.; Roush, W. R. J. Am. Chem. Soc. 2002, 124, 13644. With Lewis acids, the equatorial orientation is preferred. See: (c) Carosi, L.; Lachance, H.; Hall, D. G. Tetrahedron Lett. 2005, 46, 8981.
- (9) P(SiMe₃)₃ has been claimed in Pd-catalyzed arylamination. See: Richter, A. M.; Lischewski, V. Chem. Abstr. 2001, 135, 152619; DE Patent 19,963,009, 1991.
- (10) Conversion of P(SiMe₃)₃ complexes to PH₃ complexes with Brønsted acids:
 (a) Haupt, H.-J.; Krampe, O.; Flörke, U. Z. Anorg. Allg. Chem. 1996, 622, 807. (b) Vogel, U.; Timoshkin, A. Y.; Schwan, K.-C.; Bodensteiner, M.; Scheer, M. J. Organomet. Chem. 2006, 691, 4556.
- (11) An analogous experiment with PCy_3 shows that the majority of PCy_3 is uncoordinated during catalytic reactions as well.
- (12) Bruckmann, J.; Krüger, Č. Acta. Crystallogr., Sect. C: Cryst. Struct. Commun. 1995, C51, 1152.
- (13) Bodner, G. M.; May, M. P.; McKinney, L. E. *Inorg. Chem.* 1980, *19*, 1951.
 (14) Bartik, T.; Himmler, T.; Schulte, H.-G.; Seevogel, K. J. Organomet. Chem.
- **1984**, 272, 29. (15) McCampbell, T. A.; Kinkel, B. A.; Miller, S. M.; Helm, M. L. J. Chem.
- *Crystallogr.* **2006**, *36*, 271. (16) Consistent with this hypothesis, the borylative coupling reaction with tric(2.4 d; text) thus hypothesis as the ligrand (core and $z = 215^{\circ}$ Crease).
- tris(2,4-di-*tert*-butylphenyl) phosphite as the ligand (cone angle = 215°;Crous, R.; Datt, M.; Foster, D.; Bennie, L.; Steenkamp, C.; Huyser, J.; Kirsten, L.; Steyl, G.; Roodt, A. *Dalton Trans.* **2005**, 1108) also furnishes **4** selectively, albeit in an inferior yield relative to P(SiMe₃)₃.

JA101513D